无后为大的前一句是什么| 下午五六点是什么时辰| 鸡属于什么科| 慢性萎缩性胃炎c2是什么意思| 霸道是什么意思| 黄体破裂有什么症状| 店铺开业送什么礼物好| 膳食纤维是什么| 提刑官相当于现在什么官| 浅表性胃炎伴糜烂吃什么药效果好| 患难见真情的上一句是什么| 一叶一菩提一花一世界什么意思| 避孕药吃多了有什么副作用| 手掉皮是缺什么维生素| 月牙是什么意思| 豆浆喝多了有什么坏处| 人各有命是什么意思| 梦见火车脱轨什么预兆| 2022年属什么生肖| 扶她是什么| fm什么意思| 雌二醇过高是什么原因| 孩子多动缺什么| 非萎缩性胃炎伴糜烂是什么意思| 发改委是管什么的| 什么是社恐| 有什么好的赚钱方法| 阴虱用什么药最有效| 犟嘴是什么意思| 37属什么| 红细胞压积偏低是什么意思| 孔雀吃什么食物| 认命是什么意思| 吃什么推迟月经| 会车什么意思| 鬼压床是什么意思| 窦骁的父母是干什么的| 吃什么消炎| 薏米有什么作用| 吃什么补维生素d| 王大锤真名叫什么| 眼睛疼吃什么药效果最好| 拉血是什么病| 晚上六点是什么时辰| 风油精有什么作用| 羽字五行属什么的| 间接胆红素高是什么意思| 甲状腺病变是什么意思| 狮子座女和什么星座最配| 棉毛布是什么面料| 血压偏高喝什么茶| 缺钾最忌讳吃什么| 小腿发凉是什么原因造成的| 尿味重是什么原因| 经常喝藕粉有什么好处| 什么是金融行业| 内膜厚吃什么药掉内膜| 沈阳六院主要治什么病| 梦见红鞋子是什么意思| 薄谷开来为什么杀人| 打脸是什么意思| 敬邀是什么意思| 九月初六是什么星座| 很什么很什么| 什么的水井| 五点到七点是什么时辰| 看喉咙挂什么科| 脑瘤早期什么症状| 梦见爆炸是什么意思| 梦见家里发大水了是什么征兆| 34岁属什么的生肖| 胃痛可以吃什么| 零点是什么| 什么情况下吃奥司他韦| 或缺是什么意思| 地中海贫血是什么原因引起的| 2333是什么意思啊| 入睡难是什么原因| 归脾丸和健脾丸有什么区别| 舌尖发麻是什么问题| 手术后吃什么补品好| 宫腔镜是什么手术| 送终是什么意思| 维生素b不能和什么一起吃| 马铃薯是什么| 一什么大风| iqr是什么意思| 肛门是什么| 什么是黑茶| 精髓是什么意思| 倒灌是什么意思| 忌口不能吃什么| 来曲唑片是什么药| 什么人不能吃香蕉| 料理是什么意思| 薄姬为什么讨厌窦漪房| 肝脏的作用是什么| 吃什么降血压| 害是什么意思| 蜘蛛为什么不是昆虫| 荷尔蒙分泌是什么意思| 幽门杆菌是什么意思| 消化内科主要看什么病| 李子不能和什么一起吃| 2002年是什么生肖| 广东有什么特色美食| 女生右手中指戴戒指什么意思| 静脉曲张是什么意思| 孩子鼻子流鼻血是什么原因| 胃烧心是什么原因| 立加羽念什么| 经期头疼是什么原因怎么办| 有点尿就想尿什么原因导致的| 花孔雀是什么意思| xanax是什么药| 丹毒是什么病| 牛肉和什么菜包饺子好吃| 91年五行属什么| 吃了虾不能吃什么| 梅花三弄是什么意思| 供给侧改革什么意思| 甲泼尼龙主要治什么| 碱性磷酸酶高吃什么药| 12.31什么星座| 敬谢不敏是什么意思| 最高的学历是什么| 为什么会早泄| 发冷发热是什么原因| dw是什么牌子| 和田玉和翡翠有什么区别| 一物降一物指什么生肖| 查染色体挂什么科| 崩漏带下是什么症状| 择日不如撞日什么意思| 前列腺肥大吃什么药效果最好| 七月二十八什么星座| 年岁是什么意思| 眼睛干涩是什么原因引起的| 女今读什么| 医学检验技术是什么| 手腕痛什么原因| 全脂奶粉是什么意思| 尿道刺痛吃什么药| 唯女子与小人难养也什么意思| 什么皮肤病会传染| 泰坦尼克号什么时候上映的| 继发性闭经是什么意思| 烤箱可以烤些什么东西| 肾积液是什么原因造成的| 艾滋病通过什么传染| 长痘痘吃什么水果好| 花中之王是什么花| 马眼是什么意思| 当我们谈论爱情时我们在谈论什么| 呼吸快是什么原因| 胃肠炎可以吃什么水果| 一品诰命夫人是什么意思| 武警和特警有什么区别| 车厘子什么季节吃| 高同型半胱氨酸血症吃什么药| 五月十三日是什么星座| 大便酸臭味是什么原因| 梦见下小雨是什么征兆| 什么是梅雨季节| 大小脸挂什么科| 红斑狼疮是什么症状| 口水分泌过多是什么原因| 穗字五行属什么| 前程无量是什么意思| 墨子是什么家| 偏头痛是什么原因引起的| 6月14号是什么星座| 益安宁丸主治什么病| 冷感冒吃什么药| 掉头发补充什么维生素| 介质是什么意思| 5月7日是什么星座| 查乙肝挂什么科| nct是什么意思| 什么叫椎间盘膨出| 定力是什么意思| 植物神经紊乱中医叫什么病| 红沙日是什么意思| 什么时间进伏| 阴道恶臭是什么原因| 高就是什么意思| 喝苦荞茶对身体有什么好处| 六月十四号是什么星座| 心脏早搏有什么危害| 属鸡的跟什么属相最配| 抗糖是什么意思| 出口伤人是什么生肖| 手脚经常发麻是什么原因| 穆斯林不吃什么| 身体缺糖有什么症状| 推油是什么意思| 六月一号什么星座| 跑完步喝什么水最好| 西米露是什么做的| s.m是什么意思| 刮目相看是什么意思| 女人喝劲酒有什么好处| 松茸是什么东西| 喉咙痛有痰吃什么药| 面色无华什么意思| 美国为什么打朝鲜| 十指连心是什么意思| 心有不甘是什么意思| 丁香泡水喝有什么功效和作用| 为什么要冬病夏治| 绿茶是什么意思| 北极有什么动物| 6月13日是什么日子| 12月14是什么星座| 电视剧靠什么赚钱| 混合痔是什么| 什么叫萎缩性胃炎| 粉色裤子配什么上衣好看| 龙珠是什么| 特殊是什么意思| 藿香正气水治什么| 小孩子流鼻血是什么原因引起的| 甲减是什么原因引起的| 日皮是什么意思| babyface是什么意思| 鸟屎掉脸上有什么预兆| 滑膜炎什么症状| 不排便是什么原因| 转念是什么意思| 撕裂是什么意思| 大林木是什么生肖| cpc是什么意思啊| 什么是甲状腺| 腹部彩超挂什么科| 夏天喝什么饮料好| 流沙是什么意思| 急性心力衰竭的急救措施是什么| 狗尾续貂是什么意思| 热射病是什么症状| 肚子左侧疼是什么原因| 9月15号是什么星座| 肠道感染吃什么消炎药| 血小板低吃什么补的快| 多多益善的益是什么意思| 规格型号是什么意思| 扁桃体发炎咳嗽吃什么药效果好| 8.12什么星座| 癫痫病是什么原因引起的| 阴道出血是什么原因| bjd是什么| 肺大泡有什么危害| 扔枕头有什么忌讳吗| 孕期心情不好对胎儿有什么影响| 孕妇不能吃什么东西| 1999年属兔的是什么命| 茶寿为什么是108岁| 柝什么意思| 作梁是什么意思| 五指毛桃煲汤配什么| 北京五行属什么| 七月14号是什么星座| 孕妇吃冰的东西对胎儿有什么影响| 眼睛周围长斑是什么原因引起的| 暖宫贴贴在什么位置| 百度Jump to content

State Administration of Foreign Experts Affairs

From Wikipedia, the free encyclopedia
百度 据《证券日报》记者了解,2月1日在德国斯图加特的戴姆勒集团年会上,戴姆勒新闻发言人就此事再度表态:戴姆勒集团对这种违反伦理的做法,给予最严厉的谴责。

In mathematical logic, a theory (also called a formal theory) is a set of sentences in a formal language. In most scenarios a deductive system is first understood from context, giving rise to a formal system that combines the language with deduction rules. An element of a deductively closed theory is then called a theorem of the theory. In many deductive systems there is usually a subset that is called "the set of axioms" of the theory , in which case the deductive system is also called an "axiomatic system". By definition, every axiom is automatically a theorem. A first-order theory is a set of first-order sentences (theorems) recursively obtained by the inference rules of the system applied to the set of axioms.

General theories (as expressed in formal language)

[edit]

When defining theories for foundational purposes, additional care must be taken, as normal set-theoretic language may not be appropriate.

The construction of a theory begins by specifying a definite non-empty conceptual class , the elements of which are called statements. These initial statements are often called the primitive elements or elementary statements of the theory—to distinguish them from other statements that may be derived from them.

A theory is a conceptual class consisting of certain of these elementary statements. The elementary statements that belong to are called the elementary theorems of and are said to be true. In this way, a theory can be seen as a way of designating a subset of that only contain statements that are true.

This general way of designating a theory stipulates that the truth of any of its elementary statements is not known without reference to . Thus the same elementary statement may be true with respect to one theory but false with respect to another. This is reminiscent of the case in ordinary language where statements such as "He is an honest person" cannot be judged true or false without interpreting who "he" is, and, for that matter, what an "honest person" is under this theory.[1]

Subtheories and extensions

[edit]

A theory is a subtheory of a theory if is a subset of . If is a subset of then is called an extension or a supertheory of

Deductive theories

[edit]

A theory is said to be a deductive theory if is an inductive class, which is to say that its content is based on some formal deductive system and that some of its elementary statements are taken as axioms. In a deductive theory, any sentence that is a logical consequence of one or more of the axioms is also a sentence of that theory.[1] More formally, if is a Tarski-style consequence relation, then is closed under (and so each of its theorems is a logical consequence of its axioms) if and only if, for all sentences in the language of the theory , if , then ; or, equivalently, if is a finite subset of (possibly the set of axioms of in the case of finitely axiomatizable theories) and , then , and therefore .

Consistency and completeness

[edit]

A syntactically consistent theory is a theory from which not every sentence in the underlying language can be proven (with respect to some deductive system, which is usually clear from context). In a deductive system (such as first-order logic) that satisfies the principle of explosion, this is equivalent to requiring that there is no sentence φ such that both φ and its negation can be proven from the theory.

A satisfiable theory is a theory that has a model. This means there is a structure M that satisfies every sentence in the theory. Any satisfiable theory is syntactically consistent, because the structure satisfying the theory will satisfy exactly one of φ and the negation of φ, for each sentence φ.

A consistent theory is sometimes defined to be a syntactically consistent theory, and sometimes defined to be a satisfiable theory. For first-order logic, the most important case, it follows from the completeness theorem that the two meanings coincide.[2] In other logics, such as second-order logic, there are syntactically consistent theories that are not satisfiable, such as ω-inconsistent theories.

A complete consistent theory (or just a complete theory) is a consistent theory such that for every sentence φ in its language, either φ is provable from or {φ} is inconsistent. For theories closed under logical consequence, this means that for every sentence φ, either φ or its negation is contained in the theory.[3] An incomplete theory is a consistent theory that is not complete.

(see also ω-consistent theory for a stronger notion of consistency.)

Interpretation of a theory

[edit]

An interpretation of a theory is the relationship between a theory and some subject matter when there is a many-to-one correspondence between certain elementary statements of the theory, and certain statements related to the subject matter. If every elementary statement in the theory has a correspondent it is called a full interpretation, otherwise it is called a partial interpretation.[4]

Theories associated with a structure

[edit]

Each structure has several associated theories. The complete theory of a structure A is the set of all first-order sentences over the signature of A that are satisfied by A. It is denoted by Th(A). More generally, the theory of K, a class of σ-structures, is the set of all first-order σ-sentences that are satisfied by all structures in K, and is denoted by Th(K). Clearly Th(A) = Th({A}). These notions can also be defined with respect to other logics.

For each σ-structure A, there are several associated theories in a larger signature σ' that extends σ by adding one new constant symbol for each element of the domain of A. (If the new constant symbols are identified with the elements of A that they represent, σ' can be taken to be σ A.) The cardinality of σ' is thus the larger of the cardinality of σ and the cardinality of A.[further explanation needed]

The diagram of A consists of all atomic or negated atomic σ'-sentences that are satisfied by A and is denoted by diagA. The positive diagram of A is the set of all atomic σ'-sentences that A satisfies. It is denoted by diag+A. The elementary diagram of A is the set eldiagA of all first-order σ'-sentences that are satisfied by A or, equivalently, the complete (first-order) theory of the natural expansion of A to the signature σ'.

First-order theories

[edit]

A first-order theory is a set of sentences in a first-order formal language .

Derivation in a first-order theory

[edit]

There are many formal derivation ("proof") systems for first-order logic. These include Hilbert-style deductive systems, natural deduction, the sequent calculus, the tableaux method and resolution.

Syntactic consequence in a first-order theory

[edit]

A formula A is a syntactic consequence of a first-order theory if there is a derivation of A using only formulas in as non-logical axioms. Such a formula A is also called a theorem of . The notation "" indicates A is a theorem of .

Interpretation of a first-order theory

[edit]

An interpretation of a first-order theory provides a semantics for the formulas of the theory. An interpretation is said to satisfy a formula if the formula is true according to the interpretation. A model of a first-order theory is an interpretation in which every formula of is satisfied.

First-order theories with identity

[edit]

A first-order theory is a first-order theory with identity if includes the identity relation symbol "=" and the reflexivity and substitution axiom schemes for this symbol.

[edit]

Examples

[edit]

One way to specify a theory is to define a set of axioms in a particular language. The theory can be taken to include just those axioms, or their logical or provable consequences, as desired. Theories obtained this way include ZFC and Peano arithmetic.

A second way to specify a theory is to begin with a structure, and let the theory be the set of sentences that are satisfied by the structure. This is a method for producing complete theories through the semantic route, with examples including the set of true sentences under the structure (N, +, ×, 0, 1, =), where N is the set of natural numbers, and the set of true sentences under the structure (R, +, ×, 0, 1, =), where R is the set of real numbers. The first of these, called the theory of true arithmetic, cannot be written as the set of logical consequences of any enumerable set of axioms. The theory of (R, +, ×, 0, 1, =) was shown by Tarski to be decidable; it is the theory of real closed fields (see Decidability of first-order theories of the real numbers for more).

See also

[edit]

References

[edit]
  1. ^ a b Haskell Curry, Foundations of Mathematical Logic, 2010.
  2. ^ Weiss, William; D'Mello, Cherie (2015). "Fundamentals of Model Theory" (PDF). University of Toronto — Department of Mathematics.
  3. ^ "Completeness (in logic) - Encyclopedia of Mathematics". www.encyclopediaofmath.org. Retrieved 2025-08-06.
  4. ^ Haskell Curry (1963). Foundations of Mathematical Logic. Mcgraw Hill. Here: p.48

Further reading

[edit]
凌霄什么意思 什么是真菌感染 头发不干就睡觉有什么危害 红线女是什么意思 什么季节减肥效果最快最好
全科医学科看什么病 喝牛奶放屁多是什么原因 头晕是什么症状 徐州有什么好吃的 尹是什么意思
玮是什么意思 无名指长代表什么 更年期是什么时候 thirty什么意思 瑞典和瑞士有什么区别
免冠是什么意思 血压和血糖有什么关系 尿酸ua偏高是什么意思 纳财适合做什么 吃什么容易滑胎流产
什么预警停课hcv8jop1ns9r.cn 怀孕打黄体酮针有什么作用hcv9jop3ns7r.cn 什么不见helloaicloud.com ip指的是什么hcv8jop6ns0r.cn 血痣是什么原因引起的gysmod.com
盐酸舍曲林片治疗什么程度的抑郁hcv8jop8ns9r.cn 快递什么时候停运hcv9jop8ns1r.cn 中央电视台台长什么级别ff14chat.com 曩是什么意思hcv9jop3ns5r.cn 心花怒放是什么生肖hcv8jop2ns7r.cn
禁欲是什么意思hcv9jop5ns2r.cn 四五月份是什么星座hcv9jop4ns3r.cn 榧子是什么hcv8jop4ns8r.cn 枸橼酸西地那非片有什么副作用hcv9jop1ns8r.cn 筛窦炎吃什么药hcv9jop6ns4r.cn
附件炎用什么药最好jingluanji.com 骨皮质是什么hcv7jop5ns3r.cn 一个既一个旦念什么hcv8jop1ns5r.cn 精神病吃什么药最好bfb118.com 叶酸对人体有什么好处hcv7jop5ns5r.cn
百度